fbpx
Søg
Close this search box.

Hvordan gør hjernen det muligt for øjnene at se?

Forfattere

Soo Hyun Kim, Eun Ji Cho, Yu Jin Kim, Song E. Kim, Hyang Woon Lee

Vidste du, at det ikke kun er dine øjne, der giver dig mulighed for at se? Din hjerne fungerer sammen med øjnene for at bearbejde og give mening til alle de ting, du ser. En del af hjernen, der kaldes den visuelle cortex, er ansvarlig for synet. Hjernen indeholder over 100 milliarder hjerneceller kaldet neuroner, og de arbejder i “niveauer” for at hjælpe dig med at se verden – fra et grundlæggende niveau, hvor du opfatter simple former, til højere niveauer, hvor du forstår komplekse mønstre. Når netværk af neuroner i hjernen ikke fungerer korrekt, kan det resultere i hjernesygdomme. Læger og forskere kan bruge forskellige teknikker til at måle neuronernes aktivitet. For eksempel kan usædvanlige mønstre af hjernebølger fortælle os om beskadigede neurale netværk og abnormiteter i hjernen. Computere kan også programmeres til at “se” visuel information, og sådanne computere kan hjælpe os med at lære om synsprocessen hos mennesker.

Hvordan ser du verden?

Kan du lide det verdensberømte koreanske band BTS? I bandets tilfælde står BTS for Bang Tan Sonyeondan, men inden for neurovidenskaben kan det også stå for brain transfer stimulus, som er en afgørende hjernefunktion. Hjernen genkender det, dine øjne ser, og kan fortolke den visuelle information eller stimulus, så du kan forstå, hvad du læser eller ser. En stimulus er noget, der fanger din opmærksomhed. Når vi taler om synet, registrerer du visuelle stimuli som f.eks. lys. Når du for eksempel er til en BTS-koncert, ser du kraftige lys, der blinker i forskellige farver, men det overrasker dig ikke. Hjernen modtager disse visuelle stimuli og behandler dem sammen med andre visuelle informationer, så du ved, at lysene kommer fra scenen. Med andre ord hjælper din hjerne dig med at genkende ting, såsom scenelys og en sanger ved en koncert.

Hvordan hjælper din hjerne dig med at se?

Har du nogensinde undret dig over, hvordan dine øjne gør det muligt for dig at se? For eksempel, når du er til en koncert, hvordan kan du så få øje på en ven i den store menneskemængde? Selvom man ser med øjnene, er der en del af hjernen, der hedder visual cortex er også ansvarlig for synet, da den behandler alle visuelle informationer fra øjnene. Dette hjerneområde indeholder flere niveauer til analyse af information [1]. Lad os tænke på den visuelle cortex som en fabelagtig kage i flere lag. Nederst har du den primære visuelle cortex (V1), som fortolker prikker eller andre former uden figurer. Overraskende nok tager det kun 70 millisekunder (msec, 0,07 sekunder) at flytte signaler fra øjnene til V1.

Dernæst genkender den sekundære visuelle cortex (V2) mere detaljerede visuelle repræsentationer end V1, såsom geometriske former. Du kan tænke på det på denne måde: Når du bevæger dig op i kagelagene, fortolker niveauerne i den visuelle cortex mere kompleks visuel information [2]. Med højere niveauer af visuel cortex kan du se forskellige farver eller bevægelser. Det tager længere tid at sende signaler fra øjnene til “højere” niveauer af synsbarken. Det tager 100 msec (0,1 sekunder) at bevæge sig fra øjnene til V2, ca. 120 msec (0,12 sekunder) fra øjnene til V3.

Med andre ord bevæger visuel information sig fra øjnene gennem niveauerne i den visuelle cortex på meget kort tid (figur 1). Det forklarer, hvordan du hurtigt kan genkende en ven til en koncert. Når du læser denne artikel, kan du også forstå betydningen af hvert ord i en sætning i stedet for bare at se et virvar af ord. Din hjerne og dine øjne arbejder sammen som et team om at bearbejde visuel information.

Figur 1: Niveauer i det visuelle system og den tid, det tager dem at behandle visuel information. (A) Den visuelle cortex, den del af hjernen, der beskæftiger sig med at bearbejde de ting, vi ser, er vist med rødt. Den er placeret bagerst i hjernen. (B) Den primære visuelle cortex, som analyserer meget basal visuel information som former, arbejder hurtigst. De højere niveauer af visuel bearbejdning, som genkender mere detaljeret visuel information som mønstre i V2 og farver og bevægelser i V3/V3+, tager hver især lidt længere tid. Tilsammen modtager hjernens visuelle cortex visuelle signaler fra øjnene og forsøger at give mening til det, du ser. Det er sådan, du kan forstå en bog, du læser, eller genkende en vens ansigt.

Hvordan ved vi, hvordan den menneskelige hjerne fungerer?

Den menneskelige hjerne har milliarder af celler kaldet neuroner [3]. Neuroner forbinder sig med hinanden for at danne netværk, og de kommunikerer ved hjælp af bittesmå elektriske signaler. Hvis netværket af neuroner i hjernen bliver beskadiget, kan neuronerne ikke modtage elektriske signaler fra hinanden. Det kan påvirke hjernens funktioner negativt og føre til lidelser som hukommelsessvigt og demens.

Da vi ikke kan se hjernen indefra, hvordan kan vi så vide, om der er et problem med hjernens netværk? Forskere og læger har flere måder at analysere hjernen på! Da neuroner kommunikerer ved hjælp af elektriske signaler, kan vi måle hjernens elektriske aktivitet ved hjælp af små, ikke-metalliske enheder kaldet elektroder (figur 2A).

Figur 2: (A) For at registrere elektriske signaler i hjernen kan elektroder enten placeres på hovedbunden eller implanteres i hjernen under en operation. Elektroder giver os mulighed for at måle hjernebølgerne. (B) Hjernens reaktion på ting, vi ser, sker i “niveauer”, hvor det første niveau, V1 (blå prikker), udfører simple visuelle opgaver som at genkende former. På et mellemliggende niveau genkender V2 (grønne trekanter) mønstre og farver, og på højere niveauer giver V3/V3+ (røde stjerner) os komplekse visuelle informationer som farver og bevægelser.

Elektroder hjælper os med at se hjernebølger de er skabt af de elektriske aktiviteter i neuronerne. Ligesom bølger i havet ser hjernebølgerne ud som bølgelinjer, der bevæger sig op og ned. Men hvis en person har en hjerneskade, kan elektroderne vise langsomme og usædvanlige mønstre af hjernebølger. Evnen til nøjagtigt at aflæse hjernebølger er vigtig inden for neurovidenskaben, fordi det hjælper os med at identificere abnormiteter eller lidelser i hjernen.

For at registrere hjerneaktiviteten hos patienterne i vores undersøgelse placerede vi elektroder i den visuelle cortex under operationen og viste derefter patienterne billeder af forskellige former og mønstre. Mens patienterne kiggede på disse visuelle stimuli, registrerede elektroderne deres hjernebølger, så vi kunne undersøge, hvilke hjerneområder der blev aktiveret, og hvordan hjernen reagerede på hver form og hvert mønster (figur 2B). Ved simple visuelle reaktioner som prikker eller et lysglimt blev V1-regionerne aktiveret. Ved mellemliggende visuelle reaktioner, som geometriske former, såsom trekanter og cirkler, blev V2-områder aktiveret, og ved komplekse visuelle reaktioner, som visuel fantasi eller en illusion med blandede farver, blev V3/V3+-områder aktiveret.

Der findes andre måder at måle hjerneaktivitet på, som ikke kræver operation, såsom elektroencefalografi (EEG). I EEG kan elektroder ufarligt placeres på patientens hovedbund. EEG bruges i vid udstrækning til at se på hjerneaktivitet og identificere hjernesygdomme [4].

I dag hjælper computere os også med at forstå abnormiteter i hjernen. Ved hjælp af kunstig intelligens (AI) kan computere efterligne netværket af neuroner i den menneskelige hjerne (figur 3), hvilket gør det muligt for disse computere at fungere på samme måde som hjernen. For eksempel giver AI-baseret computeriseret “syn” computere mulighed for at genkende og fortolke visuelle stimuli, lidt som om de “ser”. Dette computerbaserede “syn” svarer til menneskets syn, men computere kan identificere ting hurtigere og mere præcist. Så når vi har svært ved at finde hjernesygdomme hos patienter, kan vi bruge AI-netværk til at få mere indsigt i sygdomme og behandle patienter mere effektivt [5].

Figur 3: (A) Netværk af indbyrdes forbundne neuroner i hjernen arbejder sammen for at hjælpe os med at se. Elektrisk information flyder fra en neuron til en anden. (B) AI kan simulere netværk af neuroner i den menneskelige hjerne, hvor information flyder mellem signaler (farvede cirkler). I dette tilfælde er input en visuel stimulus, såsom et billede, og output genkender, hvad billedet er. Faktisk ligner kunstige neuroner i AI hinanden, men har også en lignende funktion som neuroner i den menneskelige hjerne.

Resumé: Hvorfor er dette arbejde vigtigt?

I denne artikel har vi fortalt dig om, hvordan synsbarken fungerer i synet, og hvordan forskere og læger kan overvåge hjernens aktiviteter ved at måle hjernebølger. Nu ved du, at hjernen skal arbejde sammen med øjnene for at give dig mulighed for at se! Netværk af hjerneceller i den visuelle cortex kommunikerer for at behandle “niveauer” af visuel information, fra enkel til kompleks. Når hjernens netværk ikke fungerer korrekt, kan det resultere i hjernesygdomme som hukommelsessvigt og demens. Computerstyrede neurale netværk, som dem, der bruges af AI, kan hjælpe forskere med at forstå, hvad der går galt ved hjernesygdomme. Med vores arbejde håber vi at inspirere mange dygtige unge forskere til at vise interesse for neurovidenskab og hjælpe med at besvare flere fascinerende spørgsmål om synet en dag!

Ordliste

Stimuli: Et visuelt signal, der fanger en persons opmærksomhed.

Visuel cortex: Et område i hjernen, der behandler visuel information og har tre hovedlag: primære, sekundære og tertiære.

Neuron: En nervecelle, der kommunikerer med andre nerveceller og danner netværk for at fortolke den information, der kommer ind gennem vores sanser, som de ting, vi ser.

Elektrode: Små ikke-metalliske enheder, der måler hjernens elektriske mønstre, bruges i både invasive og ikke-invasive hjernebilledteknikker.

Hjernebølger: Optagelser af elektriske signaler fra hjernen.

Elektroencefalografi: En ikke-invasiv hjerneafbildningsmetode, der måler hjernens elektriske aktiviteter ved at placere elektroder på en hovedbund.

Kunstig intelligens (AI): Et computeriseret system, der efterligner netværk af neuroner i hjernen og kan udføre menneskelignende opgaver.

Neurovidenskab: Studiet af den menneskelige hjerne og samspillet mellem hjerneceller, der er involveret i hukommelsesfunktioner og adfærd.

Information om artiklen

Vi bekræfter, at vi har læst tidsskriftets holdning til spørgsmål, der er involveret i etisk offentliggørelse, og bekræfter, at denne rapport er i overensstemmelse med disse retningslinjer. En del af dette arbejde blev inviteret til at blive præsenteret på Frontiers for Young Minds gennem Organization for Human Brain Mapping (OHBM) 2021. Artiklen blev støttet af RP-Grant 2021 og 2022 fra Ewha Womans University (SEK). Undersøgelsen blev støttet af tilskud fra Basic Science Research Program, Convergent Technology R&D Program for Human Augmentation, BK21 Plus Program gennem National Research Foundation of Korea (NRF) finansieret af Ministry of Science, Information and Communication Technologies & Future Planning [NRF-2018M3C1B8016147, 2019M3C1B8090803 og 2020R1A2C2013216], og Institute of Information & Communications Technology Planning & Evaluation (IITP) finansieret af den koreanske regering (MSIT) [Nr. RS-2022-00155966], og Artificial Intelligence Convergence Innovation Human Resources Development fra Ewha Womans University til HL.
Forfatterne erklærer, at forskningen blev udført i fravær af kommercielle eller økonomiske relationer, der kunne opfattes som en potentiel interessekonflikt.
↑Kim, S. E., Kim, W. S., Kim, B. G., Chung, D., Jeong, J., Lee, J. S., et al. 2013 Spatiotemporal dynamik og funktionelle korrelater af fremkaldte neurale svingninger med forskellige spektrale kræfter i menneskets visuelle cortex. Clin. Neurophysiol. 124:2248-56. doi: 10.1016/j.clinph.2013.04.341

[1] Gilbert, C. D., Li, W. 2013 Top-down påvirkninger på visuel behandling. Nat. Rev. Neurosci. 14:350-63. doi: 10.1038/nrn3476

[2] Herculano-Houzel, S. 2009 Den menneskelige hjerne i tal: en lineært opskaleret primat-hjerne. Front. Hum. Neurosci. 3:31. doi: 10.3389/neuro.09.031.2009

[3] Ghose, G. M., Maunsell, J. 1999 Specialiserede repræsentationer i visuel cortex: en rolle for binding? Neuron. 24:79-85. doi: 10.1016/S0896-6273(00)80823-5

[4] Kalaivani, M., Kalaivani, V., Devi, V. A. 2014 “Analysis of EEG signal for the detection of brain abnormalities,” i International Journal of Computer Applications® år.

[5] Hassabis, D., Kumaran, D., Summerfield, C., Botvinick, M. 2017 Neuroscience-inspired artificial intelligence. Neuron. 95:245-58. doi: 10.1016/j.neuron.2017.06.011

Kim SH, Cho EJ, Kim YJ, Kim SE og Lee HW (2023) How Does the Brain Allow the Eyes to See? Forside. Young Minds. 11:732405. doi: 10.3389/frym.2023.732405
Elizabeth Johnson
Indsendt: 12. januar 2022; Accepteret: 4. august 2023; Offentliggjort online: 23. august 2023.
Copyright © 2023 Kim, Cho, Kim, Kim og Lee

Læs videre

Vores fantastiske hjerner giver os mulighed for at gøre utrolige ting, men alligevel er de stadig mystiske på mange måder. Forskere har opdaget nogle situationer, hvor hjernen kan “narres”, og denne indsigt i hjernens indre arbejde har ført til nogle spændende nye teknologier, herunder virtual reality (VR). Ud over sin velkendte rolle inden for spil og underholdning har VR nogle fantastiske anvendelsesmuligheder inden for medicin. VR kan hjælpe patienter med at håndtere smerter, og det kan også hjælpe kirurger med at øve delikate procedurer og vejlede dem under operationer. Andre fremskridt kaldet hjerne-maskine-grænseflader kan lytte til hjernens snak og oversætte tanker til kommandoer til computere eller endda robotlemmer, hvilket i høj grad kan forbedre livet for mennesker med visse handicap. I denne artikel vil vi forklare, hvordan forskere bruger resultater fra banebrydende hjerneforskning til at producere spændende nye teknologier, der kan helbrede eller endda forbedre hjernens funktioner.

Dette studie undersøger, hvordan opmærksomhedsunderskud/hyperaktivitetsforstyrrelse (ADHD) påvirker gravide kvinder med fokus på, hvad det betyder for deres helbred. Forskningen er rettet mod unge og teenagere og hjælper med at forklare komplekse videnskabelige ideer på en måde, der er let at forstå. Den starter med at forklare, hvad ADHD er: en almindelig tilstand, der begynder i barndommen og kan fortsætte ind i voksenalderen. Derefter ser forskningen på de specifikke problemer, som kvinder med ADHD kan have, når de er gravide, f.eks. en højere risiko for depression, angst og komplikationer under graviditeten. Ved at undersøge detaljerede sundhedsjournaler fra mange forskellige kilder og sammenligne erfaringerne fra gravide kvinder med og uden ADHD finder undersøgelsen, at kvinder med ADHD er mere tilbøjelige til at få alvorlige helbredsproblemer, når de er gravide. Den viser dog også, at de, der tager ADHD-medicin, mens de er gravide, kan opleve et fald i disse helbredsproblemer, hvilket understreger vigtigheden af sikker brug af medicin. Undersøgelsen slutter med et råd til teenagere: Tal åbent med lægen, og træf informerede sundhedsvalg under graviditeten.

Alle får influenza eller forkølelse fra tid til anden. Vi designede et eksperiment for at undersøge, hvordan det påvirker hjernen at være syg oftere. For at gøre det brugte vi et stykke af en bakterie til at få voksne hanmus til at opleve symptomer på sygdom. Vi gav musene dette stof fem gange i alt. Musene fik det bedre i løbet af et par dage og holdt to ugers pause mellem eksponeringerne. Derefter målte vi, hvordan musene lærte og huskede ny information, og hvor godt deres hjerneceller arbejdede for at hjælpe dem med at lære. Vores eksperimenter tyder på, at sygdom ofte forstyrrer kommunikationen mellem hjernecellerne, så musene får problemer med at lære og huske. Vores data kan hjælpe læger med at forudsige, hvilke patienter der kan få hukommelsesproblemer, når de bliver ældre. Vores undersøgelse viser også, hvor vigtigt det er at holde sig så sund som muligt og tage skridt til at beskytte os selv og andre, når vi bliver syge.

Vidste du, at dine celler kan fortælle, hvad klokken er? Hver eneste celle i din krop har sit helt eget ur. Disse ure er ulig alle andre. Der er ingen tandhjul eller gear. Tiden indstilles af jordens rotation, så vores kroppe er perfekt afstemt med nat og dag. Selv om du måske ikke engang er klar over deres eksistens, styrer disse ure mange aspekter af dit liv. Fra hvornår du spiser og sover til din evne til at koncentrere dig eller løbe hurtigt – urene styrer det hele. Hvordan fungerer disse ure, og hvordan fortæller de tiden? Hvad sker der med vores ure, hvis vi ser tv sent om aftenen eller flyver til den anden side af jorden? Denne artikel undersøger disse spørgsmål og forklarer de videnskabelige opdagelser, der har hjulpet os med at forstå svarene.

Tak for din tilmelding.

Du modtager om et øjeblik en e-mail med et link, hvor du bekræfter tilmeldingen.

Med venlig hilsen
MiLife